

STrategic planning of Regions And Territories in Europe for low-carbon enerGy and industrY through CCUS

Coordination and Support Action (CSA) Coordinator contact: Fernanda M.L. Veloso, BRGM (f.veloso@brgm.fr)

OSIJEK

2050

70%

0.08

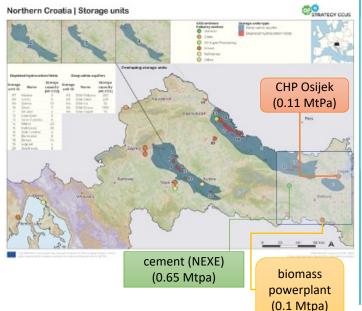
Biomass

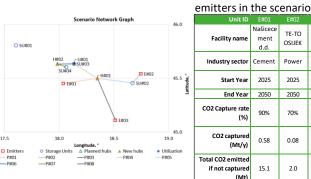
2050

80%

0.08

1.8




14 perspective DHF (144 Mt), five perspective DSA (>2500 Mt)

In Eastern cluster, Našicecement (NEXE) is intensively considering CO₂ capture in their feasibilty studies, and also the new natural gas Power Plant project with CO₂ capture, around 0.4 Mtpa, in that region is planned; it might become the first region in Croatia ready for implementing the full chain of CCS

(eastern cluster) **Capture & Transport**

Northern Croatia - main (long-term) scenario

Transport mode	Pipelines						
From	E#01	E#02	E#03	H#01	SU#02	SU#03	H#02
То	H#01	SU#02	H#01	SU#03	H#01	H#02	SU#04
Distance	27	12	49	30	26	15	8
CAPEX	7.5 M€	1.8 M€	8.8 M€	8.6 M€	4.8 M€	4.9 M€	1.3 M€
OPEX	4.5 M€	0.5 M€	4.3 M€	8.1 M€	1.2 M€	4.3 M€	0.2 M€
€/tonCO2	0.48	0.13	6.79	0.59	5.17	0.34	0.13
M€/km	0.44	0.19	0.27	0.56	0.23	0.61	0.19

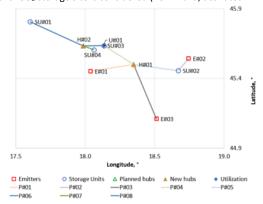
Scenario analysis was performed by using the tool developed within the WP5

Northern Croatia main (long-term) scenario (eastern cluster) **Utilization & Storage**

CO2 utilisation	U#01	
Industry	Hydrocarbon production	
Product	EOR	
Quantities	0.326 Mt cumulative oil production	
Total CO2 used	1.137 Mt	
EU ETS credit savings	1879.9 M€	

2025-2030 (phase I)

2036-2040 (phase II)


Storage	SU#04	SU#03	SUM02
Localisation	Northern Croatia, Bokšić & Onshore	Northern Croatia, Beničanci & Onshore	Deep Saline Aquifer
Start date of storage	2025	2041	2036
End date of storage	2035	2050	2050
Total CO2 stored	11.25 Mt	2.27 Mt	15.11 Mt
Cost of Storage	23.3 €/tonCO2 avoided	116.7 €/tonCO2 avoided	18.6 €/tonCO2 avoided

One of depleted HCF's is oil field considered for CO2-EOR decades ago, making oil company INA ready for CO₂ injection, which is further encouraged by success of CO₂-EOR projects in Žutica and Ivanić. However, CO₂-EOR is not encouraged in any document in Croatia as it boosts oil production, and oil field operators, who are practically the only with practical know-how for CO2 injection, are currently actively considering the CO2 storage.

Alternative scenario

The difference regarding the main scenario:

because DSA Osijek storage capacity is sufficient only for storage up to 2050, an additional CO₂ storage site is considered (DSA Drava, activated in 2036).

Conclusion

- utilization through CO₂-EOR was modeled with the main objective being CO2 storage (it is not a feasible strategy for increasing oil recovery), which results in early return of investment and cost-effective CCUS cluster
- use of mature hydrocarbon reservoirs for storage makes CCS available as early as from 2025.
- scenario analyses have to be tuned according to discussions and information gathered at RSC and Regional Event meetings