

Data template to build model for Life Cycle Assessment

(LCA) and Techno-Economic Assessment (TEA)

Release Status: Final

Author: P. COLLET

Date: 16 December 2020

Filename and version: D.4.1_Data_LCA_TEA

Project ID NUMBER 837754

STRATEGY CCUS (H2020-LC-SC3-2018-2019-2020/H2020-LC-SC3-2018-NZE-CC)

Document History

Location

This document is stored in the following location:

Filename	D.4.1_Data_LCA_TEA
Location	https://strategyccus.eu/project-outputs/economics-outputs

Revision History

This document has been through the following revisions:

Version No.	Revision Date	Filename/Location	Brief Summary of
		stored:	Changes
Final		https://brgm365.share	
		point.com/:f:/r/sites/H	
		2020STRATEGYCCUS/D	
		ocuments%20partages	
		/Deliverables/WP4?csf	
		=1&web=1&e=S94Gs2	

Authorisation

This document requires the following approvals:

AUTHORISATION	Name	Signature	Date
WP Leader	Li CHEN		DD/MM/YY
Project Coordinator	Fernanda de Mesquita Lobo Veloso	Sentaldoro	03/01/2021

Distribution

This document has been distributed to:

Name	Title	Version Issued	Date of Issue
		PUBLIC	03/01/2021

© European Union, 2019

No third-party textual or artistic material is included in the publication without the copyright holder's prior consent to further dissemination by other third parties.

Reproduction is authorised provided the source is acknowledged.

Disclaimer

The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Executive summary

This report presents the needed data to build models for Life Cycle Assessment and Techno Economic Assessment. The following main categories of processes are considered: CO₂ emissions sources, CO₂ transport, CO₂ capture technologies, CO₂ use and CO₂ storage. For each studied promising region (France - Rhone valley-, Spain –Ebro basin- and Portugal - Lusitanian basin -), a list of potential technologies is proposed for the different listed categories. The construction of the list of inputs and emissions has been done with WP2 "Mapping the technical potential of promising start-up regions" and WP5 "Establishing realistic detailed plans for CCUS at different geographical and timescales".

For all the selected technologies, data sheets have been developed. These sheets consist in the collection of the names (not the numbers) of the technical and environmental flows involved in the processes implementation. Each consumption of goods, materials, utilities, etc. are reported in these data sheets, as well as their respective units. For the selected regions, considered technologies are:

- CO2 emission from: refinery, power plant, cement industry, hydrogen production, steel production.
- Capture: pre / post combustion capture (MEA, membrane) and oxy-fuel combustion.
- Transport: pipelines.
- Use: biofuel from microalgae, methanation, methanol production, mineralization, e-fuel production, fertilizers production, photo / electroreduction of CO2 and use of CO2 in greenhouses.
- Storage: aquifer storage.

Table of Contents

1	Intro	duction7
2	Struc	ture of the data template
	2.1	General parameters
	2.2	Economic parameters
	2.3	Technical parameters
3	CO ₂ 6	emissions sources
	3.1	CO2 from refinery
	3.2	CO2 from power plant 11
	3.3	CO2 from cement production plant 12
	3.4	CO2 from hydrogen production plant13
	3.5	CO2 from steel production
4	CO ₂ 0	capture technologies
	4.1	Post combustion technologies14
	4.1.1	Amine-based technology15
	4.1.2	Membrane-based technology16
	4.2	Pre-combustion technologies 17
	4.3	Oxy-fuel combustion technology 17
5	CO ₂ t	ransport by pipelines
6	CO ₂ ι	use 19
	6.1	Methanation
	6.2	Mineralization
	6.3	Methanol 22
	6.4	Microalgae
	6.5	E-fuels
	6.6	Fertilisers
	6.7	Photo / electroreduction
	6.7.1	Electroreduction25
	6.7.2	Photoreduction
	6.8	Greenhouses

7	CO ₂ storage	27
8	Conclusion	28
9	Bibliographie	29

1 Introduction

The objective of the task 4.1 "Generic LCA and TEA modelling and data collection" of the WP4 "Methodological developments for mapping environmental and economic drivers" is to collect the list of data that will be needed to properly perform the Life Cycle Assessments (LCA) and Techno Economic Assessments (TEA).

For the selected regions, considered technologies are:

- CO2 emission from: refinery, power plant, cement industry, hydrogen production, steel production.
- Capture: pre / post combustion capture (MEA, membrane) and oxy-fuel combustion.
- Transport: pipelines.
- Use: biofuel from microalgae, methanation, methanol production, mineralization, e-fuel production, fertilizers production, photo / electroreduction of CO2 and use of CO2 in greenhouses.
- Storage: aquifer storage.

It is important to notice that these templates do not aim to present the values that will be used in the modelling of LCA and TEA. The aim of these data templates is to prepare data collection among the different stakeholders by proposing a list of parameters, economic and environmental flows that will need to be collected.

The choice of the technologies that are described in the three selected regions relies on the WP2 deliverable D 2.2 : "Key data for characterising sources, transport options, storage and uses in the promising regions", and on frequent exchanges with WP2 and WP5 leaders.. This D2.2 has been elaborated with the local teams of the different regions to produce a preliminary overview of the technical potential to develop ICCUS clusters ad networks.

2 Structure of the data template

This paragraph presents the general structure of the data templates that will be used for data collection for all processes involved in the STRATEGYCCUS project. Data are divided in three sections: general parameters, technical parameters and economic parameters.

It has to be noticed that for all the described processes, only the technical parameters are modified. Both the general and the economic parameters are kept unchanged for all the selected technologies. Therefore, in all the processes that will be described in this report, only the technical parameter will be specified.

Most of the data template have been build based on the Life Cycle inventory database Ecoinvent, version 3.6 (<u>https://www.ecoinvent.org/</u>). In some cases, when data are incomplete or even missing in the Ecoinvent database, scientific publications have also been used.

In majority of the described processes, infrastructures needed to support the technology implementation have a climate change weight that is almost negligible. Therefore, in a first approximation, those infrastructures will be only described as a certain amount of stainless steel.

For processes where infrastructure can play an important role (pipelines or greenhouses for instance), a specific attention will be paid to have a precise description of the infrastructure's composition.

2.1 General parameters

Those common general parameters are the same for all the described technologies. Location is needed if some data are spatially specific (for instance the country electricity mix). Annual operating hours is needed for the calculation of operational expenditures.

Table 2-1 General parameters needed for data template

Parameters	Values	Units
Location (GPS)	D2.4 ¹ of WP2 (tbf)	Degree
Annual operating hour	(tbf)	Hour

2.2 Economic parameters

The list of the economic parameters that have to be filled in the tables has been built in close interaction with WP5 "Establishing realistic detailed plans for CCUS at different geographical and timescales".

Table 2-2 Economic parameters needed for data template

Parameters	Values	Units		
General (defined in relation with WP5)				
Base year	To be filled with WP5 (tbf)	year		
Construction time	(tbf)	year		
Operation time	(tbf)	year		
Residual value	(tbf)	€		
Inflation	(tbf)	%		
Cost of debt	(tbf)	€		

¹ Deliverable D2.4 : Dataset of STRATEGY CCUS promising regions (confidential)

% Debt	(tbf)	%	
% Equity	(tbf)	%	
Depreciation	(tbf)	year	
% subvention	(tbf)	%	
Tax rate	(tbf)	%	
Discount rate	(tbf)	%	
Currency	(tbf)	€	
Investments costs			
Inside Battery Limit (ISBL) cost	(tbf)	€	
Outside Battery Limit (OSBL) cost	(tbf)	€	
Utilities cost			
Steam	(tbf)	€	
Electricity	(tbf)	€	
Water	(tbf)	€	
OPEX costs			
Labour costs	(tbf)	€ or % ISBL	
Maintenance	(tbf)	€ or % ISBL	
Insurance	(tbf)	€ or % ISBL	
Overheads	(tbf)	€ or % ISBL	

2.3 Technical parameters

Technical parameters are specific to each technology that will be assessed. These technologies are categorized as CO2 emitters, capture technologies, CO2 transport technologies, use technologies and storage technologies.

3 CO₂ emissions sources

Different emissions sources of CO2 are considered: refinery, power plant, cement industry, hydrogen production, steel production. These emitters have been chosen based on the emitters mapping provided by WP2 and on the quantities of CO2 emitted. Indeed, in a first approach, deployment of CCUS in the three selected regions will be prioritized for big emitters. Therefore, it is

necessary to notice that this list is not exhaustive and that new emitters could be added during the project if needed.

3.1 CO2 from refinery

The data list is build based on the Life Cycle Inventory database Ecoinvent v3.6 and data collection in WP2.

Parameters	Values	Units		
Flue gas out				
Total CO2 production	D2.4 of WP2 and WP5	tons / year		
Temperature	(tbf)	°C		
Pressure	(tbf)	bar		
Volume	(tbf)	Nm3 / year		
Flow rate	(tbf)	Nm3/hour		
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt		
Utilities				
Crude oil	(tbf)	tons / year		
Heat (Indicate the type of resource used)	(tbf)	MJ / year		
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year		
Water	(tbf)	m3 / year		
Materials				
Stainless steel	(tbf)	ton		
Product(s) out: refinery production				
Average capacity factor	(tbf)	%		
Gasoline	(tbf)	tons / year		
Diesel	(tbf)	tons / year		

Table 3-1 Technical parameters needed for refinery data collection

Jet fuel	(tbf)	tons / year
Naphta	(tbf)	tons / year
Heavy fuel	(tbf)	tons / year
Heating oil	(tbf)	tons / year
Petroleum coke	(tbf)	tons / year

3.2 CO2 from power plant

The data list is build based on the Life Cycle Inventory database Ecoinvent v3.6 and data collection in WP2.

Table 3-2 Technical parameters needed for power plant data collection

Parameters	Values	Units		
Flue gas out				
Total CO2 production	D2.4 of WP2 and WP5	tons / year		
Temperature	(tbf)	°C		
Pressure	(tbf)	bar		
Volume	(tbf)	Nm3 / year		
Flow rate	(tbf)	Nm3/hour		
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt		
Utilities for coal power plant				
Coal	(tbf)	tons / year		
Chlorine	(tbf)	kg / year		
Water	(tbf)	m3 / year		
Utilities for natural gas power plant				
Natural gas	(tbf)	Nm3 / year		
Water	(tbf)	m3 / year		
Utilities for fuel power plant				
Fuel oil	(tbf)	tons / year		
Ammonia	(tbf)	kg / year		

Limestone	(tbf)	kg / year
Water	(tbf)	m3 / year
Materials		
Stainless steel	(tbf)	ton
Product(s) out: energy production		
Capacity	(tbf)	MW
Electricity output	(tbf)	MWh / year

3.3 CO2 from cement production plant

The data list is build based on the Life Cycle Inventory database Ecoinvent v3.6 and data collection in WP2.

Table 3-3 Technical parameters needed for concrete production plant data collection

Parameters	Values	Units	
Flue gas out			
Total CO2 production	D2.4 of WP2 and WP5	Tons / year	
Temperature	(tbf)	°C	
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt	
Utilities			
Heat (Indicate the type of resource used)	(tbf)	MJ / year	
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Clay	(tbf)	tons / year	
Calcareous marl	(tbf)	tons / year	
Lime	(tbf)	tons / year	
Materials			
Stainless steel	(tbf)	tons	

Product(s) out: energy production		
Average capacity factor	(tbf)	%
Cement net production	(tbf)	tons / year

3.4 CO2 from hydrogen production plant

The data list corresponds to the production of H2 by steam methane reforming (SMR). It is build based on the Life Cycle Inventory database Ecoinvent v3.6 and data collection in WP2.

Table 3-4 Technical parameters needed for hydrogen production plant data collection

Parameters	Values	Units	
Flue gas out			
Total CO2 production	D2.4 of WP2 and WP5	tons / year	
Temperature	(tbf)	°C	
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt	
Utilities			
Natural gas	(tbf)	Nm3 / year	
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Water	(tbf)	m3 / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Average capacity factor	(tbf)	%	
H2 net production	(tbf)	Nm3 / year	
CO net production	(tbf)	Nm3 / year	

3.5 CO2 from steel production

The data list is build based on the Life Cycle Inventory database Ecoinvent v3.6 and data collection in WP2.

Parameters	Values	Units		
Flue gas out				
Total CO2 production	D2.4 of WP2 and WP5	tons / year		
Temperature	(tbf)	°C		
Pressure	(tbf)	bar		
Volume	(tbf)	Nm3 / year		
Flow rate	(tbf)	Nm3/hour		
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt		
Utilities for coal power plant				
Coke	(tbf)	tons / year		
Iron	(tbf)	tons / year		
Heat (Indicate the type of resource used)	(tbf)	MJ / year		
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year		
Oxygen		Nm3 / year		
Materials				
Stainless steel	(tbf)	ton		
Product(s) out: energy production				
Average capacity factor	(tbf)	%		
Steel net production	(tbf)	tons / year		

Table 3-5 Technical parameters needed for steel production data collection

4 CO₂ capture technologies

4.1 Post combustion technologies

Post combustion carbon capture technologies absorb the produced CO2 after carbon combustion (of fossil and / or commodities). One of the main challenges is the separation of CO2 (in relatively low concentration) from other gas like dinitrogen (N2). Different kind of technologies are available for

post combustion CO2 capture. In the STRATEGY CCUS project, solvent-based (monoethanolamine, MEA) and membrane-based technologies will be assessed.

4.1.1 Amine-based technology

Solvent-based CO2 capture involves the absorption of CO2 from the emitted gas into a liquid carrier, the solvent. Then the solvent is regenerated to break the absorbent-CO2 bond and reuse the solvent. The most commonly used solvent is the MEA. The data list is build based on the following references: Ecoinvent v3.6 and (Giordano, Roizard et Favre 2018)

Table 4-1 Technical parameters needed for amine-based CO2 post combustion capture data collection

Parameters Valu	es	Units	
Flue gas in			
Temperature	D2.4 of WP2 and WP5	°C	
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition. Could be identical to output composition of the emissions process	(tbf)	% mol or %wt	
Captured CO2 flow			
Temperature	(tbf)	°C	
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Capture ratio	(tbf)	%	
Composition	(tbf)	% mol or %wt	
Flue gas out			
Temperature	D2.4 of WP2 and WP5	°C	
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt	

Utilities		
Heat (Indicate the type of resource used)	(tbf)	MJ / year
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year
Water	(tbf)	m3 / year
MEA	(tbf)	kg / year
NaOH	(tbf)	kg / year
Activated carbon	(tbf)	kg / year
Materials		
Stainless steel	(tbf)	ton

4.1.2 Membrane-based technology

CO2 separation by membranes is based on the selective transport and separation of the CO2 in the flue gas. It is particularly well adapted for emitters where the carbon dioxide partial pressure is high, like natural gas processing (Wilberforce et al. 2019). The data list is build based on the following references: Ecoinvent v3.6 and (Giordano, Roizard et Favre 2018)

Table 4-2 Technical parameters needed for membrane-based CO2 post combustion capture data collection

Parameters Valu	Values	
Flue gas in		
Temperature	D2.4 of WP2 and WP5	°C
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Input composition. Could be identical to output composition of the emissions process	(tbf)	% mol or %wt
Captured CO2 flow		
Temperature	(tbf)	°C
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour

Capture ratio		(tbf)	%
Composition		(tbf)	% mol or %wt
Flue gas out			
Temperature		be filled with WP2 and WP5	°C
Pressure		(tbf)	bar
Volume		(tbf)	Nm3 / year
Flow rate		(tbf)	Nm3/hour
Output composition (should include if possible CO2, SO2, N2, NH3 H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	, 02,	(tbf)	% mol or %wt
Utilities			
Electricity (Indicate the type of electricity (from grid, other) (tbf)			kWh / year
Materials			
Stainless steel	(tbf)		ton

4.2 Pre-combustion technologies

In pre-combustion technologies, CO2 from gasification is removed from the syngas, before the use of the syngas directly as a fuel in steam turbine. This is the case in integrated gasification combined cycle (IGCC) power plant. Syngas can also be used indirectly as a precursor for second generation biofuels, and CO2 pre-combustion could also arise in such systems. In a fist approach, the same technologies will be used for both post and pre-combustion carbon capture systems.

4.3 Oxy-fuel combustion technology

In oxy-fuel combustion, the combustion of the fuel occurs in oxygen instead of the air. This technology uses air separation unit to produce clean oxygen (95% to 99% purity), that significantly affects the energy balance of the system. The exhaust gas is an almost a pure carbon dioxide stream, that doesn't need any supplementary purification step before transportation and sequestration. This technology is still under development. Nevertheless, it is included in the list of potential future capture technologies, as the StrategyCCUS aims at defining long term prospective scenarios for CCUS deployment in Europe. The data list is build based on the following references: Ecoinvent v3.6 and (Cau et al. 2018)

Table 4-3 Technical parameters needed for oxy-combustion capture data collection

Parameters	Values	Units
Flue gas in		

Temperature	D2.4 of WP2 and WP5	°C
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Input composition. Could be identical to output composition of the emissions process	(tbf)	% mol or %wt
Captured CO2 flow		
Temperature	(tbf)	°C
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Capture ratio	(tbf)	%
Composition	(tbf)	% mol or %wt
Flue gas out		
Temperature	be filled with WP2 and WP5	°C
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Output composition (should include if possible CO2, SO2, N2, NH3, O2, H2O, CO, CH4, NOx, SOx, H2S, PM10, PM2.5).	(tbf)	% mol or %wt
Utilities		
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year
Materials		
Stainless steel	(tbf)	ton

5 CO₂ transport by pipelines

CO2 transportation would be most likely done by pipelines. Most of the existing CCUS projects, applied for Enhance Oil Recovery, transport CO2 by pipelines so this is the selected technology. The data list is build based on the following reference: Ecoinvent v3.6 and (Chisalita et al. 2019).

Parameters	Values	Units	
CO2 flow in			
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Materials	Materials		
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
CO2 transported	(tbf)	tons / year	

Table 5-1 Technical parameters needed for pipelines CO2 transport data collection

6 CO₂ use

The list presented in Table 6-1 is based on data provided by WP2 for the three selected regions: France (Rhone valley, FR), Spain (Ebro basin, ES) and Portugal (Lusitanian basin, PT). This first attempt correspond to a panel of three to five technologies that will be potentially implemented in short term in the selected regions. The list of CCU technologies for long term will be based on both these data and on regional prospective scenarios / roadmaps for each regions. Therefore new CCU technologies could be added to this first list of short term CCU technologies. For each technology, expected output as well as the potential related functional unit are given. The functional unit corresponds to a reference value that is appropriate for the function served by the product being assessed, and to which all the flows and results (environmental impacts) are related

Table 6-1 List of technologies for carbon use in the three selected regions

Technology	country	Output	Functional unit
Microalgae	FR	Biofuels	1 MJ biofuel
Methanation	FR, PT	biomethane	1 MJ bioCH4
Methanol	FR, ES	Methanol	1 MJ biomethanol
Mineralization	FR, PT, ES	Concrete aggregates	1 m3 of concrete aggregates

E-fuels	PT, ES	E-fuels	1 MJ e-fuel
Fertilizers	ES	urea	1 kg urea
Photo / Electro- reduction	ES	Mono / polymer	1 kg Mono / polymer (tbd)
Greenhouses	PT, FR	Vegetables	1 kg vegetables

6.1 Methanation

Methanation consists in the conversion of carbon monoxide (CO) and carbon dioxide (CO2) to methane (CH4) through hydrogenation. In a context of climate change mitigation, needed H2 for hydrogenation is considered to be produced by electrolysis. H2 production by SMR with CCS could also be an option, although this is not presented in the table below. The data list presented in Table 6-2 is build based on the following references: Ecoinvent v3.6 and (Collet et al. 2017)

Table 6-2 Technical parameters needed for methanation data collection

Parameters	Values	Units		
CO2 flow in				
Pressure	(tbf)	bar		
Volume	(tbf)	Nm3 / year		
Flow rate	(tbf)	Nm3/hour		
Input composition	(tbf)	% mol or %wt		
Utilities for electrolysis				
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year		
Deionised water	(tbf)	kg / year		
Utilities for methanation	Utilities for methanation			
H2 from electrolysis	(tbf)	Nm3 / year		
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	kWh / year		
Catalyst	(tbf)	kg / year		
Materials				
Stainless steel	(tbf)	ton		
Product(s) out: energy production				
Methane	(tbf)	Nm3 / year		

02	(tbf)	Nm3 / year
Heat	(tbf)	MJ / year

6.2 Mineralization

Mineralization of carbon dioxide (CO2) corresponds to the reaction of CO2 with materials containing alkaline-earth oxides, leading to CO2 storage into thermodynamically stable solid. The data list presented in Table 6-3 is build based on the following references : Ecoinvent v3.6 and (Ostovari, Sternberg et Bardow 2020). In the case described below, CO2 reacts with Serpentinite in order to obtain MgCO3. Other carbonates can be produced depending on the substrate.

Table 6-3 Technical parameters needed for mineralization data collection

Parameters	Values	Units
CO2 flow in		
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Input composition	(tbf)	% mol or %wt
Utilities		
Heat (Indicate the type of resource used)	(tbf)	MJ / year
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year
Serpentinite (case specific)	(tbf)	kg / year
NaCl	(tbf)	kg / year
NaHCO3	(tbf)	kg / year
Ammonium sulphate	(tbf)	kg / year
Cooling water	(tbf)	m3 / year
Materials		
Stainless steel	(tbf)	ton
Product(s) out		
Magnesium carbonate	(tbf)	kg / year
Magnetite	(tbf)	kg / year

6.3 Methanol

Carbon dioxide hydrogenation can lead to the production of methanol. Due to its relatively low production costs, methanol production appears as a good opportunity for CCU. The data list is build based on the following references : Ecoinvent v3.6 and (Matzen et Demirel 2016)

Parameters	Values	Units	
CO2 flow in			
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities for electrolysis			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Deionised water	(tbf)	kg / year	
Utilities for methanol production			
Heat (Indicate the type of resource used)	(tbf)	MJ / year	
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	kWh / year	
Catalyst	(tbf)	kg / year	
Water	(tbf)	m3 / year	
H2 from electrolysis	(tbf)	Nm3 / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Methanol	(tbf)	tons / year	

Table 6-4 Technical	parameters n	needed for	methanol	production	data collection
	parameters	iccucu ioi	methanor	production	uutu concetion

6.4 Microalgae

Different products from microalgae can be produced by different conversion pathways. In the StrategyCCUS project, a focus will be put on biofuels production from microalgae, because of the relatively higher maturity of this conversion route compared to other conversion pathways. Among these biofuels, liquid hydrocarbons that can be substituted for or blended with gasoline or diesel

fuel are particularly attractive. In a first step, the conversion pathway towards biodiesel will be considered. The data list presented in Table 6-5 is build based on the following references : Ecoinvent v3.6 and (Valente, Iribarren et Dufour 2019; Collet et al. 2014).

Parameters	Values	Units		
CO2 flow in				
Pressure	(tbf)	bar		
Volume	(tbf)	Nm3 / year		
Flow rate	(tbf)	Nm3/hour		
Input composition	(tbf)	% mol or %wt		
Utilities				
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year		
Heat (Indicate the type of resource used)	(tbf)	MJ / year		
Water	(tbf)	m3 / year		
Ammonium nitrate	(tbf)	kg / year		
Diammonium Phosphate	(tbf)	kg / year		
Hexane	(tbf)	kg / year		
Methanol	(tbf)	kg / year		
Materials				
Stainless steel	(tbf)	ton		
Product(s) out: energy production				
Biodiesel	(tbf)	tons / year		
Glycerin	(tbf)	tons / year		
Oil cakes	(tbf)	tons / year		

Table 6-5 Technical	parameters needed fo	r hindigsal from	microalgae	data collection
	i parameters needed to	i bioulesel il olli	microalgae	

6.5 E-fuels

In the StrategyCCUS project, a focus will be put on e-fuels that could be used as substituted to actual liquid hydrocarbons fuels. Among the different e-fuels that are possible, the conversion pathway towards OMEs (OxyMethylene Ethers) will be considered. The data list is build based on the following references : Ecoinvent v3.6 and (Deutz et al. 2018)

Table 6-6 Technical parameters needed for OME production data collection

Parameters	Values	Units	
CO2 flow in			
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities for electrolysis			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Deionised water		kg / year	
Utilities for OME production			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Heat (Indicate the type of resource used)	(tbf)	MJ / year	
Water	(tbf)	m3 / year	
H2 from electrolysis	(tbf)	Nm3 / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Methanol	(tbf)	tons / year	

6.6 Fertilisers

In the Spain region, CO2 is planned to be converted into fertilizers. In the example given below two fertilizers are jointly produced: Ammonium nitrate + calcium carbonate. The data list is build based on the following references : Ecoinvent v3.6 and (Lake et al. 2019)

Table 6-7 Technical parameters needed for fertilizers production data collection

Parameters	Values	Units
CO2 flow in		
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year

Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	kWh / year	
Cellulose based waste material	(tbf)	kg / year	
Aqueous ammonia	(tbf)	kg / year	
Aqueous calcium nitrate	(tbf)	kg / year	
Hexane	(tbf)	kg / year	
Methanol	(tbf)	kg / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Fertilisers (Ammonium nitrate + calcium carbonate)	(tbf)	tons / year	

6.7 Photo / electroreduction

6.7.1 Electroreduction

In a first approach, the acid formic production will be chosen as an example of possible pathway for electroreduction development process. The data list is build based on the following references : Ecoinvent v3.6 and (Thonemann et Schulte 2019; Aldaco et al. 2019). If needed in the project, other molecules production such as ethylene (Khoo, Halim et Handoko 2020) could be investigated.

Parameters	Values	Units	
CO2 flow in			
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	

Heat (Indicate the type of resource used)	(tbf)	MJ / year	
Copper (cathode)	(tbf)	kg / year	
Methanol	(tbf)	kg / year	
Tetrabutylammonium tetrafluoroborate (TBABF4)	(tbf)	kg / year	
Cooling water	(tbf)	m3 / year	
Deionised water	(tbf)	m3 / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Acid formic	(tbf)	kg / year	

6.7.2 Photoreduction

Unfortunately, no data are available yet on LCA of CO2 photoreduction process. However, implication of IFPEN in the H2020 Sun2Chem project will help defining the list of potential inputs that would be needed to perform LCA and TEA.

6.8 Greenhouses

In Portugal, CO2 is expected to be used as input into greenhouses for vegetables production. Indeed, CO2 enrichment in greenhouses has proved to enhance the production of a different of crops. The example is related to the production of tomatoes, cucumbers and strawberries in Italy, and will serve as a basis for the development of such technology in Portugal.

The data list is build based on the following references : Ecoinvent v3.6 and (Marchi, Zanoni et Pasetti 2018)

	Values	Units
Parameters		
CO2 flow in		
Pressure	(tbf)	bar
Volume	(tbf)	Nm3 / year
Flow rate	(tbf)	Nm3/hour
Input composition	(tbf)	% mol or %wt

Table 6-9 Technical parameters needed for greenhouses data collection

Utilities			
Heat (Indicate the type of resource used)	(tbf)	MJ / year	
Water	(tbf)	m3 / year	
Ammonium nitrate	(tbf)	kg / year	
Diammonium Phosphate	(tbf)	kg / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out: energy production			
Vegetables / fruits / Flowers	(tbf)	kg / year	

7 CO₂ storage

In the three selected regions, CO2 sequestration is expected to be mainly done in saline aquifers. The data list is build based on the following reference: Ecoinvent v3.6 and (Chisalita et al. 2019).

Parameters	Values	Units	
CO2 flow in			
Pressure	(tbf)	bar	
Volume	(tbf)	Nm3 / year	
Flow rate	(tbf)	Nm3/hour	
Input composition	(tbf)	% mol or %wt	
Utilities			
Electricity (Indicate the type of electricity (from grid, other)	(tbf)	MWh / year	
Materials			
Stainless steel	(tbf)	ton	
Product(s) out			
CO2 stored	(tbf)	tons / year	
Leakage	(tbf)	%	

8 Conclusion

The report presents a first list of CO2 emitters and use and / or storage technologies that will be mobilized in the deployment of CCUS scenarios in the three selected regions (France, Portugal and Spain). Main objectives are shortly described each technology, as well as to list all potential parameters and variables that would be required to perform TEA and LCA.

The technologies that are presented here do not constitute a final set of process, but rather a starting point to help building prospective scenarios of CCUS deployment in Europe. Close interactions with WP2 and WP5 have been needed to build this first attempt and are expected to continue to keep on improving the lust of the potential involved processes.

9 Bibliographie

- Aldaco, Rubén; Butnar, Isabela; Margallo, María; Laso, Jara; Rumayor, Marta; Dominguez-Ramos, Antonio et al. (2019) Bringing value to the chemical industry from capture, storage and use of CO2. A dynamic LCA of formic acid production. In : The Science of the total environment, vol. 663, p. 738–753. DOI: 10.1016/j.scitotenv.2019.01.395.
- Cau, Giorgio; Tola, Vittorio; Ferrara, Francesca; Porcu, Andrea; Pettinau, Alberto (2018) CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture. Techno-economic analysis. In : Fuel, vol. 214, p. 423–435. DOI: 10.1016/j.fuel.2017.10.023.
- Chisalita, Dora-Andreea; Petrescu, Letitia; Cobden, Paul; van Dijk, H.A.J; Cormos, Ana-Maria; Cormos, Calin-Cristian (2019) Assessing the environmental impact of an integrated steel mill with postcombustion CO2 capture and storage using the LCA methodology. In : Journal of Cleaner Production, vol. 211, p. 1015–1025. DOI: 10.1016/j.jclepro.2018.11.256.
- Collet, Pierre; Flottes, Eglantine; Favre, Alain; Raynal, Ludovic; Pierre, Hélène; Capela, Sandra; Peregrina, Carlos (2017) Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. In : Applied Energy, vol. 192, p. 282–295. DOI: 10.1016/j.apenergy.2016.08.181.
- Collet, Pierre; Lardon, Laurent; Hélias, Arnaud; Bricout, Stéphanie; Lombaert-Valot, Isabelle; Perrier, Béatrice et al. (2014) Biodiesel from microalgae Life cycle assessment and recommendations for potential improvements. In : Renewable Energy, vol. 71, p. 525–533. DOI: 10.1016/j.renene.2014.06.009.
- Deutz, Sarah; Bongartz, Dominik; Heuser, Benedikt; Kätelhön, Arne; Schulze Langenhorst, Luisa; Omari, Ahmad et al. (2018) Cleaner production of cleaner fuels. Wind-to-wheel – environmental assessment of CO 2 -based oxymethylene ether as a drop-in fuel. In : Energy & Environmental Science, vol. 11, n° 2, p. 331–343. DOI: 10.1039/C7EE01657C.
- Giordano, Lorena; Roizard, Denis; Favre, Eric (2018) Life cycle assessment of post-combustion CO 2 capture. A comparison between membrane separation and chemical absorption processes. In : International Journal of Greenhouse Gas Control, vol. 68, p. 146–163. DOI: 10.1016/j.ijggc.2017.11.008.
- Khoo, Hsien H.; Halim, Iskandar; Handoko, Albertus D. (2020) LCA of electrochemical reduction of CO2 to ethylene. In : Journal of CO2 Utilization, vol. 41, p. 101229. DOI: 10.1016/j.jcou.2020.101229.
- Lake, J. A.; Kisielewski, P.; Hammond, P.; Marques, F. (2019) Sustainable soil improvement and water use in agriculture. CCU enabling technologies afford an innovative approach. In : Journal of CO2 Utilization, vol. 32, p. 21–30. DOI: 10.1016/j.jcou.2019.03.010.
- Marchi, B.; Zanoni, S.; Pasetti, M. (2018) Industrial Symbiosis for Greener Horticulture Practices. The CO 2 Enrichment from Energy Intensive Industrial Processes. In : Procedia CIRP, vol. 69, p. 562–567. DOI: 10.1016/j.procir.2017.11.117.

- Matzen, Michael; Demirel, Yaşar (2016) Methanol and dimethyl ether from renewable hydrogen and carbon dioxide. Alternative fuels production and life-cycle assessment. In : Journal of Cleaner Production, vol. 139, p. 1068–1077. DOI: 10.1016/j.jclepro.2016.08.163.
- Ostovari, Hesam; Sternberg, André; Bardow, André (2020) Rock 'n' use of CO 2. Carbon footprint of carbon capture and utilization by mineralization. In : Sustainable Energy & Fuels, vol. 4, n° 9, p. 4482–4496. DOI: 10.1039/DOSE00190B.
- Thonemann, Nils; Schulte, Anna (2019) From Laboratory to Industrial Scale. A Prospective LCA for Electrochemical Reduction of CO2 to Formic Acid. In : Environmental science & technology, vol. 53, n° 21, p. 12320–12329. DOI: 10.1021/acs.est.9b02944.
- Valente, Antonio; Iribarren, Diego; Dufour, Javier (2019) How do methodological choices affect the carbon footprint of microalgal biodiesel? A harmonised life cycle assessment. In : Journal of Cleaner Production, vol. 207, p. 560–568. DOI: 10.1016/j.jclepro.2018.10.020.
- Wilberforce, Tabbi; Baroutaji, Ahmad; Soudan, Bassel; Al-Alami, Abdul Hai; Olabi, Abdul Ghani (2019) Outlook of carbon capture technology and challenges. In : The Science of the total environment, vol. 657, p. 56–72. DOI: 10.1016/j.scitotenv.2018.11.424.

